2013

All questions may be attempted but only marks obtained on the best four solutions will
count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Define what it means for a function f : C — C to be holomorphic at the point
Z0-

L

f is holomorphic at z if

lim f(z) = f (=)
2—320 Z—2p
exists. If it does we set
o) — 1 1 =)

zZ—20 zZ— 20
and we call this the derivative of f at z.

(b) Show that f(z) = Z is not holomorphic at z, for any 2z, € C.

We have

z) — Z—Z z— z
lim M)- = lim 0 = lim 43
Z2—20 zZ— 20 2—20 Z — 20 2=20 2 — 2
To show that the limit does not exist, we approch 2 first horizontally and then

vertically, i.e.

(i) z — zp € R. Then z — 2y = z — % so that

TGO R e A Y

2—+20 Z— 2 2720 T — 20
(i) 2 — zp € i - R, i.e. z— 2 is purely imaginary. Then z — zp = —(2 — 2g) so that
z2) — f(z —(z — =
fim f(2) = fz0) _ TR —(z—2) _ _i
z2—r2g zZ— 20 22— 20 Z— 2

As the two answers are different, the limit does not exist and f is not differentiable
at ZQ-

(c) Write the Cauchy-Riemann equations for u and v, where f(z) = u(z,y)+1iv(z, y)
i.e. u and v are the real and imaginary part of f. Show that, if f is holomorphic,
then u is harmonic. You may assume that the second partial derivatives of u and v
exist and are continuous.

The Cauchy-Riemann equations are

ou @ ou ov
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The function v is harmonic if Au =0, i.e.
u, o
oz2 oy

We have
Pu 0%u 0 [Ou o (Ou o [Ov 0 v v 0%
by the Cauchy-Riemann equations. We have used that the mixed second partial

derivatived are equal, which is guaranteed by the continuity of the second partial
derivatives.

(d) For the harmonic function v : R*\ {0} — R given by the formula

 —y
'U(.’,U,y) - 2 +y2
find all holomorphic functions f(z) such that Sf(2) = v(z,y). Write f as a function

of z.

We use the second of the Cauchy—Riemann equations. We have

ou  Ov 0 —y B 2xy
oy  O0x Oz \a+y?) (22 +y?)?
We notice that this expression is symmetric with respect to x and y. This simplifies
the integration below:
2y @
uwlz,y) = | —————=dy=———— + c(x),
@) = [~ = s + o)
where ¢(x) is the constant of integration, depending possibly on @ but not on y.
We need to find e¢(x). We differenfiate with respect to # and use the first Cauchy—
Riemann equation.
2

ou (a2 +y?) —2x-x Y-

e : 2J) 2\2 +d(z) = Jz 2)2 3 (72 & 2)2]

oz (22 + y?) (a2 4 y*) 0 (22 + y?)
the last by direct calculation. We deduce that ¢/(z) = 0 = c¢(z) = k a constant
independent of both z and y. So

a 2 _ .2
)= =L 2
Y

x

‘ z .Y T — iy 2 )
= 5 v Y) = k B FERETET TR
f(z) = u(z,y) +iv(z,y) ac2+y2+ +7’m2—|—y2 $2+y2+ | 2|2 z-f—

Alternative solutions: We notice that g(z) = 1/z is holomorphic and has Sg(z) =
w77 For any solution f(z) we will have S(f(z) — g(2)) = 0, i.e. the holomorphic
function f — g has constant imaginary part. Therefore, by a well-known theorem,
it is a constant on the region, i.e.

flz)=g(z)+k VzeC\{0}.
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2. (a) Assume that f is holomorphic on the domain D and that |f(2)| is constant on
D. Show that f is a constant function. You may use the fact that if f'(z) =0 on
D, then f is constant.

Let |f(2)| = k. Then
If(2)]? =k = u* +v* = k2. (1)

If k=0, then u(z,y) = v(z,y) = 0 = f(z) = 0. So we can assume that k # 0.
We differentiate (1) in z and y to get

ou ov
u-a—:E -i—v% =0 (2)
Ou ov

ou v
We solve the system of (2) and (4). We multiply (2) with v and (4) with v and add
et 0 0 0 0
20U pEe 2 O] 1
uts o TV 0= (u +U)8(E 0=>k8x 0.
Since k # 0 we get du/Oz = 0. By substitution we also get dv/dz = 0. We have
Oou . Ov
y = — ) —— = () =
f(z)—ax+zax 0+1i0=0.

Now we use the fact that f'(z) = 0 for all z in a domain implies that f is constant.

(b) Establish the following integration formula with the aid of residues:

™

/00 s de = —
o (224 1)(x?+44) 6

Complete explanations are required.

We consider a
fz) = (22 4+1)(22+4)

and the contour v in Figure 1. By Cauchy’s residue theorem

/f(z) dz = 27rines (f,2),

MATH2101 PLEASE TURN OVER


https://mymathscloud.com

Figure 1: Contours for problem 2(b) and 5(b)

where z; are the poles of f(z) inside . The poles of f are at the zeros of the
denominator ¢ and £2¢. Only 7 and 27 are inside v and only when R > 2. Since
the zeros are all simple, the poles are simple. We calculate the residues.

. ) ) ) . 22 4? -1 1
res (f,4) = lim(z—4)f(2) = lim(>—1) (z—i)(z+i)(22+4) 2i(i2+4) 2-3 60
N . = ‘ 2 R e T |
res (f,24) = lim.(2=20)f(2) = lim (z=2) o o v 1) ~ (@i + 1) & (<3) 3
Therefore,
) 1 1 1 T
Lf(z) dz = 21 (—a + E) = 2“& =3

The contour «y can be split in two parts: the horizontal segment [—R, R] traversed
from left to right and g the semicircle traversed anticlockwise. On [— R, R| we have
the parametrisation z = z, —R < z < R, which gives dz = dz and

i £ = z?
/[_R,R] flz)dz= /_R @@ " 2/0 Er D@ )"

as the integrand is an even function. If we show that

lim f(z)dz=0
R—00
TR

([ e | 104)-3

then
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R 2
N s
— lim 2 [ — dp =L
Rvoo A —:24-1)(3:3+4) T3

=>/ de =
1):“14) 6

On yr we have z = Re®, |22+ 1| 2 |2  —1=R*—1, |22+ 4] > |2|* —4 = R% -
and, therefore,

RE
< <
< length (’YR) Izlé"j‘y’;df(z” . WR(Rz . 1)(}22 — 4) =0

z)dz

as R — oo, since the numerator is R® while there are four powers of R in the
denominator.

3. (a) State Goursat’s theorem.

Let v be a triangular contour and f be holomorphic on an open set U containing vy

and its interior. Then
JECLS
¥

(b) Let f be a holomorphic function on a domain D containing a rectangle R and
its interior. Using Goursat’s theorem, show that

IRCLE

Let R be the rectangular contour DCBA traversed anticlockwise, as in Figure 2.
We draw the diagonal DB and we consider the two triangular contours DC'B and
BAD traversed anticlockwise. By properties of complex integration

|

f2)dz=— | f(z)de
DB

BD

Goursat’s theorem gives
f(z)dz=0= f(z)dz

BAD pcB

Adding these, we see that the contribution of the diagonal cancels, as it is traversed
in opposite directions. We, therefore, get

JIRCLE RCEE
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\

Figure 2: Contours for problem 3(a) and 3(b)

(c) Show that the map w = z—;z maps the upper half-plane {z, $(z) > 0} confor-
mally onto the unit disc {z, |z| < 1}.

We prove that
lw| <1< S(z) > 0. (5)

zZ—1

jwl = |

S(z—1)zZ+i)<(z+)(E-i) e z2zz2—iZ+iz+1<zZ4+iZ—iz+1

<le|z—i<|z+i & z—i* <|z+i]?

i(z—2) < —i(z—2) & 12iF(2) < —12iF(2) & —2F(2) < 28(2) © 0 < 49(2) © (z) > 0.

Geometrically the distance to ¢ is less than the distance to —¢ iff z is in the half-
plane determined by the perpendicular bisector of the segment from ¢ to —¢ and
containing i. The bisector is clearly the real axis.

The map is holomorphic on {z,&(z) > 0} as —i (root of the denominator) is not in
it. It is a rational function. The inverse map is given by
z—1 w41

= < W=z — 1 -l)=—1i—ww=—1i )& z= :
W= wztiw=z—1%< z(w—1) i — 1w w+1) &z O

This is also holomorphic on D(0, 1) as it is a rational function and 1 ¢ D(0,1). The
last calculation shows that the map is a injection. The surjectivity follows from (5).
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Figure 3: Regions for problem 3(c)

4. (a) State Cauchy’s integral formulas for f and its derivatives.

' .
F™ (20) = i/c(—&;?fdz’

2mi Z— Zy
where f is holomorphic on an open set U containing the closed disc D(a, R) and C
is the circle centered at a with radius R traversed anticlockwise and z, € D(a, R).

(b) What is the value of the integral

1
d
/Cz2+1 “

where C' is (i) the circle |z| = 2 traversed anticlockwise, (ii) the circle |z —i| = 1
traversed anticlockwise?

We h
e have . 1

2+1 (z—)(z+19)
For (ii) we notice that f(z) = 1/(z + 4) i holomorphic on and inside the circle
|z —i] = 1. So Cauchy’s integral formula gives

il = 1
/Cmdz=2mf(z)=2mi+i=7r.

For (i) we use partial fractions:
1 1/(2i) . —1/(2d)
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We set fi1(z) = 1/(2¢). Then
—1— 2= 1/(%) z — 1—/(2—Z) 2z =2mif1(7) — 2me f1(—1) =
/C d—/c )4 /C ) 4z = 2mify(i) — 2mify(~1) = 0,

(z—1)(z+1) z—1 Z+1

as fi is constant. We have used Cauchy’s integral formula twice.

Alternative method: Use Cauchy’s residue theorem. With f(2) = 1/(2*+1) we have
residues at #+i. Therefore,

. . . o 1 1
res (f, 30) = lim (27 9)f(2) = lim == = 5.

By the residue theorem
/ f(2) dz = 2mi(res (f,4) +res (f,—1)) = 0.
c

(c) Assume that f is entire and satisfies for some constant M the inequality
()] < M1+ |42, VzecC.

Show that f is a polynomial of degree < 2.

We know that f has a Taylor expansion at 0:

f(z) - Za‘nznv

n>0

with

AR

ool

To show that f is a polynomial of degree < 2, it suffices to prove that

On

ar = 0, vk > 3.
Cauchy’s inequalities give:
f(k)(o) lrzrlli}}glf(z” M1 +R)5/2
< <
k! RE - R
as R — oo, for k>3 ask >5/2.

— 0,
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Figure 4: Region for problem 5(a)

5. (a) How many roots does the polynomial f(z) = 22° — 62% + z + 1 have inside the
annulus
1< |2 <27

Explain your answer.

On |z| = 2 we have |22°| = 2 - 2° = 64, while
|~ 622+ 2+ 1] <6|z*+ 2| +1=6-22+24+1=24+2+1=2T.

We notice that 64 > 27. With fi(z) = 22° and ¢1(2) = —62® + z + 1, Rouché’s
theorem gives that fi + g = f has the same number of zeros as f; inside |z| = 2.
Since 22°% = 0 has root only 0 but with multiplicity 5, f(z) = 0 has 5 solutions inside
|z| = 2.

Now we look inside the circle |z| = 1. On |z] = 1 we have | — 62%| = 6|z|> = 6, while
22 + 24+ 1 <2z + 2| +1=2+14+1=4

We notice that 6 > 4. With fo(z) = —622 and g2(2) = 22° + 2z + 1 Rouché’s
theorem gives that f, + go = f has inside |z| = 1 the same number of zeros as fs.
Moreover, there are no zeros of fa+ g on |z| = 1. Since f(z) = 0 has zero at 0 with
multiplicity 2, f(z) = 0 has 2 solutions inside |z| = 1. We subtract the answers to
get that inside the annulus 1 < |z| < 2 f(2) = 0 has 5 — 2 = 3 solutions.

(b) Establish the following integration formula with the aid of residues:

= sinx T sin 2
/ T 5T T e
MATH2101 -0 &
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Complete explanations are required.

We consider )
¥4

e
&= rm+s
and use the contour in Figure 1. The poles of f occur at the zeros of 22 + 4z + 5.

We solve

2 +4z45=08 (2+2)?+1=02+2=dic 2=—2+1.

Only —2 + 1 is inside the contour and only for R > /5 = | — 2 4+ i|. The pole is
simple as the zero is simple. We calculate the residue
Riz(z iy . ',f) ei(—2+1j)
—24+i) = i 2—1 = i =
res (f,=240) = lim (o42-0)f(2) = lm o NGeto+d)  —2tit2ti
e ¥el  cos(—2) +isin(—2)  cos2 —isin2
2% 2ei - 2ei '

We split the contour to the horizontal segment [—R, R] and the semicircle yg. On
[-R,R) wehave 2=z, —-R<z < R,dz=dz

i 1T R R .
€ Ccosx S T
dz: 7i': —d ; —d
_/I_Hjﬁ]f(Z) /_R$2+4$+5(& ,/_{{33'2+4(E+5 x+2/_Rx2+4$+5 v

When R — oo we get

R iz 5] oo :
e cosz sinx
li dz = ————dzr = ————— dz+1i —d
Bibreo [_R,R]f(z) ¢ /_Rx2+4x+5 ’ /_oo 22+ 4z +5 xﬂ/_oo 22+ dz 450
so that the integral in the problem is the imaginary part of the limit. The residue
theorem gives

.cOS2 —1isin?2 cos2 —isin?2

/ f(2)dz+ | f(2)dz = 2mires (f, —2+1i) = 271 , =
(-R,R] YR 2et e

If we show that
lim f(z)dz =0,

R—o0 TR

/°° sinx p 7 sin 2
——dr = — .
o Z?+4x+5 e

then we get

We parametrise vg as z(t) = Re®, 0 < ¢t < 7. On it, using he triangle inequality
twice, we have

122 + 42+ 5| > |22 — |42 + 5| > |2|2 — (|42] + 5) = R? — 4R — 5.

On the other hand |e¥?| = [gtftcost—Rsint| = g=Rsint <7 a5gin¢ > 0. So

/’ e'bz
——dz
yn 22+ 4245

as R — oo.
MATH2101 CONTINUED

0

1
(2)dz H__—Rz—4R—5_+

<length (vg)max |f(z)| < 7R
2€YR

TR

10


https://mymathscloud.com

6. (a) Let f(z) be holomorphic on an open set that contains the closed unit disc
{z,]2z] <1} and f(0) = 1/2. By working with

1 1 dz
N 9+ bl S
=g I ECE
prove that
2 (7 oot bat=14 70, 2 [ setysm tar=1- f(0)
™. 0 2 ! ™ Jo 2 ]

( ]
We have 2sin®(#/2) = 1 —cost and 2 cos®(t/2) = 1+ cost. Parameterizing the circle
as z = ¢ we get

1 1

2mi S [Qi(”‘)}f(z)‘ff 1

= — 2 =42 g
2m z z  2m Jy ( cost)f(e")idt
2 cos?(t/2)

- ;/0%(1 + cost) f(e™)dt = ;/OZW{ sin?(t/2) }f(e“)dt.

This is how we get the two integrals on the left-hand side of the result. For the
right-hand sides we use the Cauchy Integral formulas:

O Ly S Yy (e

2mi lz|=1 z 2mi |z|=1] 22

z = f'(0),

while Cauchy’s theorem gives directly

1

— z)dz = 0.

27 |z|:1f()
As a result
i z ‘:!-‘ VA %:——}—- M P f(Z) 7 = /
23 iyt [Qi( +z)} =) 2m'/|z|=1 (2 — £ (f(2)+ =3 )>d 1=7(0).

(b) Establish the following integration formula with the aid of residues:

2m 5 5w
—dt = —.
o ©-+3cost 2

Complete explanations are required.

We
e use 5 1

&) = s me e
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Figure 5: Contour for problem 6(b)

so that on the contour C given by |2| = 1 we have z = €%, 271 = e™® dz = iedl

and g 2
T 5 1 it i H
= . : _ie® dt = —_ dt.
/c Ha% /0 5+ 3(e" + e )/2ict /0 5+ 3cost

We rewrite

() = T = ey
2= 524 (3/2)(22+1)i 10z+322+34°
To find the root of the denominator we solve

—-104++/100—4-3-3 —10++64

324 102+3=0& 2= R i = -3, —1/3.

Only —1/3 is inside C. This is a simple root, therefore, a simple pole of f. We
calculate the residue

10 1 10
-1/3)= 1 1/3 = i 1/3 _—
res (f,-1/3) = lim (+1/3)f(2) = lim (41/8) 5571734 3(—1/3 + 3)i
e, 10 105
C(=149)9 8 4i
The residue theorem gives
/ f(z)dz = 2mires (f,—1/3) = 2m’£, = 5—7T
c 44 2
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